
Recently Used Recorder user manual

Mǎ Liàng
Release 0.1

bigmaliang@163.com

April 14, 2006

Contents

1 Introduction 2

2 Data Structure 3

3 Use rur 4

3.1 Init . 5

3.2 Manage . 5

3.3 Quit . 7

4 RUR NOISE 8

5 License 8

1

Recently Used Recorder 1 INTRODUCTION

1 Introduction

rur is a very simple library that offer the recently used record management interface to the
POSIX 1 software developer. The record information is stored in the ˜/.recently-used.xbel file
with the Desktop Bookmarks Storage Specification 2 compliant format. Developer can use
this library to manage his recently opened file easily.

In the latest 2005, I added the recently opened file’s record function to xpdf 3 with a dirty
solution to store the record information into the ˜/.xpdfRecently file. After that, I recognized
that this should be a common function between many software which visit one sort of files
on disk(I should realize this early). So, I turned into the gedit 4 project’s source code, and
then found the recent-file-spec 5, which defined the common way the gnome application used
to store these information. When I then read the EggRecentModel code which gedit used, I
found that these code is so difficult to understand, it does a bunch of read/write operations,
and it’s not very optimized. On the other hand, I found ebassi is also interest on the recently
used recorder function, and he has already defined the newer Desktop Bookmarks Storage
Specification to store these information. So, I contacted with him and then decided to write a
third-party library that not depend on GLib to offer this function to Non-GNOME application.
This is mainly why rur present here, in addition, I want a library to record the visited file’s
page number for the application with an optional function, this should be very useful while
you are playing with the pdf like file.

When I start to work for it, I found the hardest part is the XML file parse and write back
into disk. So, I need a XML parser to do this for me. At first, I prepare to use libxml 6, but,
as same as the last time, I found libxml is too difficult to understand, so I replaced it by a
simpler way once again. I use Mini-XML 7 to parse and write the record file. Mini-XML thinks
in the simplest way to parse one XML file, so I can use it in the simplest way.

To be honest, I am a very junior C programmer. rur is my first free software, with the
following guy’s help, it became useable eventually.

Table 1: Many thanks to
derekn derekn@foolabs.com rur is inspired by xpdf
James Willcox jwillcox@cs.indiana.edu recent-file-spec
Michael Sweet mike@easysw.com Mini-XML library
Stig Brautaset stig@brautaset.org a small and flexible linked list
Emmanuele Bassi ebassi@gmail.com Desktop Bookmarks Storage Specification

1http://en.wikipedia.org/wiki/POSIX
2http://devel.emmanuelebassi.net/papers/bookmark-spec.html
3http://www.foolabs.com/xpdf/
4http://www.gnome.org/projects/gedit/
5http://www.freedesktop.org/wiki/Standards/recent-file-spec
6http://xmlsoft.org
7http://www.easysw.com/˜mike/mxml/

2 bigmaliang@163.com

Recently Used Recorder 2 DATA STRUCTURE

2 Data Structure

Currently, rur only manage some basic information of the record file. e.g. some thing like
add, modify, visit time of the bookmark element defined in the DBSS(Desktop Bookmarks
Storage Specification) doesn’t support now. You can add it yourself or ask me to do that if
necessary. Without any Graphic User Interface, rur only offer a timestamp sorted C structure
list to developer as follow:

struct _RurItem {

RurItem *next;

/* attribute of bookmark element */

char *uri;

int page_num;

/* attribute of metadata children elements */

char *app_name;

char *mime_type;

time_t timestamp;

int count;

unsigned int status : 2;

};

Every member’s responsibility of the structure is defined in table 2.

next point to the next RurItem in the RurItem list

uri file location which this RurItem represent for

page num the file’s page number in last time application visited

app name application’s name visited the target pointed by uri

mime type MIME Type of the target pointed by uri

timestamp seconds from the system’s Epoch last time visited the item

count time counter of the application visited this file last time

status statue of current RurItem: OLD, UPDATE, NEW, DELETE

Table 2: member’s responsibility

On the other side, this structure could be better understood with a simple practical
˜/.recently-used.xbel file offered:

3 bigmaliang@163.com

Recently Used Recorder 3 USE RUR

<?xml version="1.0" encoding="UTF-8"?>

<xbel version="1.0"

xmlns:bookmark="http://www.freedesktop.org/standards/desktop-bookmarks"

xmlns:mime="http://www.freedesktop.org/standards/shared-mime-info">

<bookmark href="file:///tmp/test-213.pdf" pagenum="1">

<info>

<metadata owner="http://freedesktop.org">

<mime:mime-type type="application/pdf" />

<bookmark:applications>

<bookmark:application name="xpdf" count="2"

timestamp="1144827204" />

</bookmark:applications>

</metadata>

</info>

</bookmark>

<bookmark href="file:///tmp/test-212.pdf" pagenum="1">

<info>

<metadata owner="http://freedesktop.org">

<mime:mime-type type="application/pdf" />

<bookmark:applications>

<bookmark:application name="xpdf" count="4"

timestamp="1144827204" />

</bookmark:applications>

</metadata>

</info>

</bookmark>

</xbel>

This file could be more complex, it can store many application’s history recorder at once,
such as gedit, Evince, openoffice.org, and so on. People who use rur must at first offer his
application name and the file’s mime-type 8 which he played with to rur, with these information,
rur can differentiate many application’s history record in one file efficiently.

3 Use rur

In section 2, we have taken a glance of the contents what rur mainly maintained. In this
section, I’ll describe the detail need to be pay some attention from the point of view of a rur
user, during the lifetime of the your application.

8http://www.freedesktop.org/standards/shared-mime-info

4 bigmaliang@163.com

Recently Used Recorder 3 USE RUR

3.1 Init

User can call function rur init() to start to use rur. You offer your application’s name and file’s
mime-type to rur, rur will return a RurItem list to you where digs from ˜/.recently-used.xbel
file. All app name member of the list equal to you offered. The list is sorted by the timestamp
member, from larger to litter, this means that the most recently opened file is the first item
in the RurItem list.

RurItem* rur_init(const char *app_name, const char *mimet);

In the normal situation, rur will find the record you have already made previously. But, we
must also take care of the following situations:

• file ˜/.recently-used.xbel dose not exist and can’t be created

• app name or mime type is NULL you offered

rur will return NULL back to you.

• file ˜/.recently-used.xbel dose not exist and can be created

• file ˜/.recently-used.xbel dose not legal

• file ˜/.recently-used.xbel dose not contain any of your app name item

To remember your app name and mime type, rur will return a One-Item RurItem list
to you with the item’s uri is NULL, and it’s app name and mime type is you offered.

3.2 Manage

When you have already initialed rur, you may get a RurItem list which should contain useful
information for your application. For example, you may use the uri member of the list’s item
to let user select and open them again and jump to the page number last time visited. This
subsection is concentrate on the management of the RurItem list. You can do the following
operate on the RurItem list currently:

1. Add new item

int rur_opened_file(const char *opend_name, RurItem **list);

Once user opened a [new] file in your application, you can tell rur to manage the opened
file’s record use the function rur opened file(). The opened name parameter will be
stored as the uri member of the new item, the list parameter is the pointer point to
the list pointer which is returned on subsection 3.1. The return value of this function
described as following:

5 bigmaliang@163.com

Recently Used Recorder 3 USE RUR

• −1
opened name is a fresh uri in *list, but add failure because of system failure. Or,
parameter you input not legal.

• 0
opened name is a fresh uri in *list, and add to the *list as a new item in success.
The app name and mime type is same as the other items in the *list, the timestamp
is the time added the item, the count member is 1, and the status of the item is
NEW(this is not so important for the user, it is used internal by rur). The value
of list shall be changed in this case with the new item as it’s first item(except the
list is a One-Item RurItem list with the item’s uri is NULL which has described in
subsection 3.1, rur will reuse this item to store the new item), this is why the list
parameter must be a pointer to a pointer.

(By the way, The default page number is 1 of a new item. If your application is
treated with some file like html that does not have page number. You can ignore
this attribute of RurItem list.)

• 1
In the *list, there is already a item with it’s uri equal to opened name you offered.
So, no item will be add to the *list, but rur will update the original item’s timestamp
to current time, add count by 1, and change status member to UPDATE in this
case.

2. Remove old item

int rur_delete_file(RurItem *list, const char *uri);

Once user closed a file or activated the remove one file’s history record function you
offered, you can call this function to tell rur do not manage the item no longer which
the uri is equal to you offered. This function’s return value also worth to be check:

• −1
Parameter you offered to rur not legal.

• 0
Item in list with the uri same as you offered has been deleted successful. Please
note that the item hasn’t been deleted actually, rur just set item’s status value to
DELETE for further use. So, I advise you check the item’s status when you re-offer
the uri list for user select to not offer the DELETE-ed item to user.

• 1
Item delete failure, this is mostly because of the uri you offered is not exist in the
RurItem list.

Currently, to remove more than one file’s records from file ˜/.recently-used.xbel(for
example: you want to remove all the history record you have made), you must call this
function one-by-one. If necessary, you can improve this function to do such things more
wiseness.

6 bigmaliang@163.com

Recently Used Recorder 3 USE RUR

3. Change one item’s page number

int rur_save_pagenum(RurItem *list, const char *uri, int pagenum);

If you call this function, it mostly like that your user have select another file to use. So,
you want to save the file’s page number your user used just now. Or, user want to quit
from your application, you need to save current file’s page number for next time you
visit it.

The pagenum parameter interpreted by rur as following:

• <0
Save the item’s page num to 1 whose uri equal to the parameter.

• =0
Make the item’s page num++ whose uri member equal to the parameter.

• >0
Save the item’s page num to pagenum actually as the parameter you specified.

This function’s return value is as the same as remove item function, 0 represent save
page number successful.

3.3 Quit

It’s time to say goodbye to kernel. But before this, you need to save the list you previously
initialized and managed back into ˜/.recently-used.xbel(In the mean time, don’t forget to save
the page number if you want). This is very easy to you, just call this function:

void rur_close(RurItem *list);

This function will do the following things for you:

• open ˜/.recently-used.xbel file for read and write
At the end of 3.1 step, rur will close the ˜/.recently-used.xbel file, so, we must open
this file again at the 3.3 step.

• lock ˜/.recently-used.xbel file

• re-load ˜/.recently-used.xbel file
During your program’s lifetime, another program may write back into the ˜/.recently-
used.xbel file. Your program can’t overwrite the changes that made by other programs.
So, rur need read the ˜/.recently-used.xbel content again before she write you RurItem
list back into this file.

7 bigmaliang@163.com

Recently Used Recorder 5 LICENSE

• write list back into file
rur judge the item’s status member one-by-one, if it is not OLD, we’ll write the item’s
information back into the file except the status is DELETE. rur will delete the DELETE
status entry in the ˜/.recently-used.xbel file, this is the actually delete action.

Like in section 3.1, rur treat the following situation respective:

– file ˜/.recently-used.xbel exist but not legal

– file ˜/.recently-used.xbel does not exist and can’t be created.

rur will not write the list back into disk.

– file ˜/.recently-used.xbel does not exist and could be created

– file ˜/.recently-used.xbel exist and have the DBSS compliant content.

rur will write list back into disk successfully.

• unlock file

• free memory of rur

4 RUR NOISE

Yes, rur may also produce some noises for debug use. Currently the noise is divided into 2
level: WARRING and ERROR.

Something not so painful will be print to stdout, otherwise the error message will be print
to stderr. Of course, you can suppress rur to do such things by remove -DDEBUG in the
Makefile of the rur source code.

This is all the things rur do, hope it will be useful to you, and welcome your suggestion
and improvement.

5 License

This library is free software; you can redistribute it and/or modify it under the terms of the
GNU Library General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Library General Public License for more details.

8 bigmaliang@163.com

